The complex zeros of random polynomials
نویسندگان
چکیده
منابع مشابه
The Complex Zeros of Random Polynomials
Mark Kac gave an explicit formula for the expectation of the number, vn (a), of zeros of a random polynomial, n-I Pn(z) = E ?tj, j=O in any measurablc subset Q of the reals. Here, ... ?In-I are independent standard normal random variables. In fact, for each n > 1, he obtained an explicit intensity function gn for which E vn(L) = Jgn(x) dx. Here, we extend this formula to obtain an explicit form...
متن کاملReal Almost Zeros of Random Polynomials with Complex Coefficients
We present a simple formula for the expected number of times that a complex-valued Gaussian stochastic process has a zero imaginary part and the absolute value of its real part is bounded by a constant value M. We show that only some mild conditions on the stochastic process are needed for our formula to remain valid. We further apply this formula to a random algebraic polynomial with complex c...
متن کاملZeros of Random Polynomials On
For a regular compact set K in C and a measure μ on K satisfying the Bernstein-Markov inequality, we consider the ensemble PN of polynomials of degree N , endowed with the Gaussian probability measure induced by L(μ). We show that for large N , the simultaneous zeros of m polynomials in PN tend to concentrate around the Silov boundary of K; more precisely, their expected distribution is asympto...
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملEquidistribution of zeros of random polynomials
We study the asymptotic distribution of zeros for the random polynomials Pn(z) = ∑n k=0 AkBk(z), where {Ak}k=0 are non-trivial i.i.d. complex random variables. Polynomials {Bk}k=0 are deterministic, and are selected from a standard basis such as Szegő, Bergman, or Faber polynomials associated with a Jordan domain G bounded by an analytic curve. We show that the zero counting measures of Pn conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1995
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1995-1308023-8